Isoindigo-Based Small Molecules with Varied Donor Components for Solution-Processable Organic Field Effect Transistor Devices.

نویسندگان

  • Hemlata Patil
  • Jingjing Chang
  • Akhil Gupta
  • Ante Bilic
  • Jishan Wu
  • Prashant Sonar
  • Sheshanath V Bhosale
چکیده

Two solution-processable small organic molecules, (E)-6,6'-bis(4-(diphenylamino)phenyl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S10) and (E)-6,6'-di(9H-carbazol-9-yl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S11) were successfully designed, synthesized and fully characterized. S10 and S11 are based on a donor-acceptor-donor structural motif and contain a common electron accepting moiety, isoindigo, along with different electron donating functionalities, triphenylamine and carbazole, respectively. Ultraviolet-visible absorption spectra revealed that the use of triphenylamine donor functionality resulted in an enhanced intramolecular charge transfer transition and reduction of optical band gap, when compared with its carbazole analogue. Both of these materials were designed to be donor semiconducting components, exerted excellent solubility in common organic solvents, showed excellent thermal stability, and their promising optoelectronic properties encouraged us to scrutinize charge-carrier mobilities using solution-processable organic field effect transistors. Hole mobilities of the order of 2.2 × 10(-4) cm²/Vs and 7.8 × 10(-3) cm²/Vs were measured using S10 and S11 as active materials, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoindigo-Based Small Molecules with Varied Donor Components for Solution-Processable Organic Field Effective Transistor Devices

Two solution-processable small organic molecules, (E)-6,6′-bis(4(diphenylamino)phenyl)-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-dione (coded as S10) and (E)-6,6′-di(9H-carbazol-9-yl)-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′dione (coded as S11) were successfully designed, synthesized and fully characterized. S10 and S11 are based on a donor-acceptor-donor structural motif a...

متن کامل

Isoindigo-Containing Molecular Semiconductors: Effect of Backbone Extension on Molecular Organization and Organic Solar Cell Performance

We have synthesized three new isoindigo-based small molecules by extending the conjugated length through the incorporation of octyl-thiophene units between the isoindigo core and benzothiophene terminal units. Both UV-vis and Grazing incidence X-ray diffraction experiments show that such extension of the π-conjugated backbone can induce H-aggregation, and enhance crystallinity and molecular ord...

متن کامل

Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor

In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...

متن کامل

Solution-processed zinc tetrabenzoporphyrin thin-films and transistors

a r t i c l e i n f o Thin-films and organic field-effect transistors fabricated from a solution-processable precursor of zinc tetra-benzoporphyrin (ZnTBP) are reported. Amorphous, insulating precursor films were deposited by spin-casting and thermally converted into polycrystalline, semiconducting thin-films comprising grains on the order of 5 μm in diameter. Thin-film X-ray diffraction indica...

متن کامل

Solution-processable 2,1,3-benzothiadiazole containing compound based on the novel 1-dodecyl-6-dodecoxynaphthyridine-2-one unit for organic field-effect transistors

Small molecule organic semiconductors have well-defined structures and can be used in place of polymers which often show batch-to-batch variation. Many different electron-rich donor and electrondeficient acceptor units have been used to design materials with reduced HOMO-LUMO gaps and improved mobilities. Here we introduce a novel acceptor unit, 1-dodecyl-6-dodecoxynaphthyridine-2one. This acce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 9  شماره 

صفحات  -

تاریخ انتشار 2015